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ABSTRACT: We will consider a new type of family of analytic functions and its subclasses will be discussed
here, by which coefficient bounds of Fekete Szego functional |a; — pa3| for the analytic functions f(z) = z +
Y=o @y z™, |z| < 1 fitting in these classes and subclasses, will be obtained.

KEYWORDS: Univalent functions, Coefficient inequality, Starlike functions, Convex functions, Close to
convex functions and bounded functions.

MATHEMATICS SUBJECT CLASSIFICATION: 30C50

1. Introduction : Let A denote the family of functions of the type
f2) = z+ Z a, 2" (1.1)
n=2

regular in the unit disc E = {z ®z|< 1|}. Let the family of functions of the form (1.1) which are analytic and
univalent in [E be denoted by §,.

Bieber Bach ( [7], [8] ) proved in 1916,that |a,| < 2 for the functions f(z) €§. Léwner [5] proved in 1923 that
las| < 3 for the functions f(z) &S§..

With the recognized estimates |a,| < 2 and |a;| < 3, naturally some relation was to be sought between a; and
a,? for the class §,Léwner’s method was used by Fekete and Szego [9] to prove the following well known result
for the class §.

Let f(z) &8, then

laz — pa3| < 1+2exp(1Ti>,ifO <pu<s1; (1.2)
Lm— 3,ifu= 1.

[3—4u,ifu30;
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The inequality (1.2) plays a crucial role in determining approximations of higher order coefficients for some

subclasses § (See Chhichra [1], Babalola [6]).

Let us outline some subclasses of .

We will denote by S*, the family of univalent and starlike functions

gz)=z+ Z b,z™ € A and satisfying the condition

n=2

(Zg’ (2)
e

9(2)
We denote by %, the class of univalent convex functions

) >0,z € E. (1.3)

h(z) = Z+chz”,z EA
n=2

and satisfying the condition

pe LEH (@)

E’W >0,z € E. (1.4)
A function f(z) € A is known as close to convex function if there exists g(z) € S* such that
zf'(z
Re ( I )>>0,ze[E. (1.5)
9(z)

Kaplan [3] familiarized us with the class of close to convex functions and denoted it by C and proved that all
close to convex functions are univalent.

We introduced a new subclass

2[(F (@)’ + Ff'(z 1+ Az\°
{ oy e AU ;)(Z)fﬁ))f @] _ i E}
and we will denote itas S*(f, f', f"', A, B, 6).
Symbol < stands for subordination, which we describe as follows:
Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called subordinate
to F(z) in E if there exists a function w(z) analytic in E satisfying the conditions w(0) = 0 and |w(z)| < 1 such
that f(z) = F(w(2)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form

w(z) = Z d,z", w(0) = 0, |w(z)| < 1. (1.8)

It is known that
ld| < 1,]|d,| < 1—|d4]? (1.9)
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2. PRELIMINARY LEMMAS: For0 < ¢ < 1, we write

c+z
w(z) = (1 + cz)
so that
5
(i ngg) =1+ (A-B)sciz+ (A= B)o(c; —BSei)z* + — — — (2.1)

3. MAIN RESULTS

THEOREM 3.1: Let £(2) € S*(f, f'. f", A, B, §), then

((A—B)S[5(5A — 14B)] 6%(A—B)®> 5(54 — 14B) — 9
72 T o9  HMIUHRSTgsap
S(A—B) _ 5(5A—14B)—9 5(54 — 14B) + 9
A ) e )
§2(A—B)?  8(A—B)[6(54 —14B)] 5(5A — 14B) + 9
"~ o9 HT 72 R Y TV

3.1)

las — paj| < 5 (3.2)

(3.3)

The results are sharp.

Proof: By definition of f(z) € S, (4; B), we have

2(F @) +f@f' @] (1+Aw@)\*
@ @ (1 m Bw(z)) ' S (34
Expanding the series (3.4), we get

{1+ 6a, + (6a?, + 12a3)z% +---}
={1+[(A-B)Sc; +3a,]z+ [6(A — B)(c, — B6c?) + 3a,(A — B)5cy + 4az+2a?,]z>
o) (3.5)

Identifying terms in (3.5), we get

(A-B)S
Ay =0 (3.6)
8(A-B) 862(A-B)(5A—14B)
az =———¢c + - c? (3.7)
From (3.6) and (3.7), we obtain
8(A-B) 82(A-B) ((54-14B) (A-B)
as — pas = — 2+ — { —— ,u} ct (3.8)
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Taking absolute value, (3.8) can be rewritten as

6(A-B)
8

las — ,ua%| <

|c2| n 52(A-B) |(5A—14B) _(4-B)
2 72

| len? (39)

Using (1.9) in (3.9), we get

5(A—B) (A=B)|(A—2B) (A—B)
lag — uaj]| ST(l— lc1]?) + 5 3n g1 B lcq]?

— 4B | { (3.10)

8

8%(A-B)(54-14B)  &§*(A-B)? | _ 6(A—B)} | |2
72 9 8 2

9(54-14B)

Casel: pu < S(A—B)

(3.10) can be rewritten as

8(A-B) 8(A-B)[6(54-14B)-9] 62%(A-B)?
|as — pa3| < ST+ (PRI S e | (311)

[6(54—14B)—9]
5.8(A-B)

Subcase | (a): u <
Using (1.9), (3.11) becomes

8(A-B)[6(54-14B)] 82(A-B)?
72 9

las — na3| < (3.12)

[6(54—14B)—9]
5.8(A-B)

Subcase | (b): u >

We obtain from (3.11)

8(A-B)

lag — pajl < 5

(3.13)

. 9(54—14B)
Casell:u = eGa_B)

Preceding as in case I, we get

(3.14)

§(A-B) 8%2(4-B)? 5(A-B)[6(5A—14B)+9
las — pad| < Z2 4 {2 p - AR B e, 12

Subcase 11 (a): u < 2GA-14E)+0

86(A—-B)

JETIR2208474 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org €628



http://www.jetir.org/

© 2022 JETIR August 2022, Volume 9, Issue 8 www.jetir.org (ISSN-2349-5162)

(3.14) takes the form

la; — padl < %52 (315)

Combining the results of subcases 1(b) and Il(a), we can write

8(A-B) [0GA-14B)-9] _ = _ 8(54-14B)+9

la — pag| < == s 5804-B) — "= T ssa-p)

(3.16)

6(5A-14B)+9
85(A-B)

Subcase 11 (b): u >

Preceding as in subcase | (a), we get

8§2(A-B)? u— 82(A-B)(5A—14B)

las — na3| < 5 — (3.17)

Combining (3.12), (3.16) and (3.17), the theorem is established.
Extremal function for (3.1) and (3.3) is demarcated by

p?-2q

_ p’ R
filz) = Z{H (p? —Zq)}

Extremal function for (3.2) is defined by

f2(2) = z(1 + z*)*

A-B)

Where p = 8( (A-B)5[8(54-14B)]

72

and q =

Corollary 3.2: PuttingA = 1,B = —1 and § = 1 in the theorem, we get

19 4 5

36 9#’ f” 8!
|a3—,ua2|<<1 if—< <Z
21=13 Yg=Ht=Yy

4 19 7
@#—%.lfﬂzz

These approximations were derived by G. Singh [6] and are outcomes for the class of univalent functions.
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